Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity

Authors

  • Prathima Panthi Dept. of Microbiology, Bhavan’s Vivekananda College of Science, Humanities and Commerce; Sainikpuri, Secunderabad500 094, Telangana, India
  • S. P. Sreedhar Bhattar Dept. of Microbiology, Bhavan’s Vivekananda College of Science, Humanities and Commerce; Sainikpuri, Secunderabad500 094, Telangana, India

Keywords:

Silver nanoparticles, fruit peels, phytopathogens, Fusarium, Alternaria

Abstract

The present work aimed to biologically synthesize silver nanoparticles by using the peels of fruits such as Citrus sinensis (Orange) and Punica granatum (Pomegranate) as reducing agents and testing the inhibitory effects of the biologically synthesized silver nanoparticles on two common fungal pathogens of plants- Fusarium sps. and Alternaria sps. The green synthesis of silver nanoparticles was carried out using the aqueous peel extracts of the fruits and the formation of silver nanoparticles was visualized from the colour change of the solutions to dark brown. Further characterization of the nanosilver was carried out by UV/Visible spectrophotometry and the size determination of the nanoparticles was done by SEM analysis. Their antifungal activity was tested against the isolates of Fusarium sps. and Alternaria sps. by using in vitro plate assays such as agar well diffusion assay and mycelial plug method. The results showed that both the peel extracts were potent bioreductants and mediated the synthesis of silver nanoparticles in a short time. Further, the biologically synthesized silver nanoparticles could successfully inhibit the growth of both the phytopathogens tested.

 

References

Schiro, G., Verch, G., Grimm, V., & Müller, M. (2018). Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. Journal of Fungi,4(2), 63. doi:10.3390/jof4020063

Escrivá, L., Font, G., & Manyes, L. (2015). In vivo toxicity studies of Fusarium mycotoxins in the last decade: A review. Food and Chemical Toxicology,78, 185-206. doi:10.1016/j.fct.2015.02.005

Lee, H. B., Patriarca, A., & Magan, N. (2015). Alternaria in Food: Ecophysiology, Mycotoxin Production and Toxicology. Mycobiology,43(3),371. doi:10.5941/ myco.2015.43.3.371

Yang, X., Navi, S. S., & Pecinovsky, K. T. (2005). Evaluation of Fungicides for the Control of Cercospora Leaf Spot, White Mold, and Brown Spot of Soybean. doi:10.31274/farmprogressreports-180814-2690

Namanda, S. (2004). Fungicide application and host-resistance for potato late blight management: Benefits assessment from on-farm studies in S.W. Uganda. Crop Protection. doi:10.1016/s0261-2194(04)00079-1

Aleksandrowicz-Trzcińska, M., & Grzywacz, A. (2014). The effect of fungicides used in the protection of forest tree seedlings on the growth of ectomycorrhizal fungi. Acta Mycologica,32(2), 315-322. doi:10.5586/am.1997.028

O’Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology,46(4), 293-304. doi:10.1007/s13313-017-0481-4

Fletcher, J. (1988). Innovative approaches to plant disease control. Endeavour,12(2), 95. doi:10.1016/0160-9327(88)90113-5

Herodotus, Thucydides, Adler, M. J., Rawlinson, G., & Crawley, R. (1994). The history of Herodotus. Chicago: Encyclopaedia Britannica.

Ishida, T. (2018). Antibacterial mechanism of Ag ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicology,4(5). doi:10.15406/mojt.2018.04.00125

Andisheh, N., & Baserisalehi, M. (2016). Antimicrobial effects of biosynthesized silver nanoparticles produced by Actinomyces spp. based on their sizes and shapes. Malaysian Journal of Microbiology. doi:10.21161/mjm.88516

Rajawat, S., & Mailk, M. (2018). Silver Nanoparticles: Properties, Synthesis Techniques, Characterizations, Antibacterial and Anticancer Studies. doi:10.1115/1.860458

Jo, Y., Kim, B. H., & Jung, G. (2009). Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Disease,93(10), 1037-1043. doi:10.1094/pdis-93-10-1037

Min, J., Kim, K., Kim, S., Jung, J., Lamsal, K., Kim, S., . . . Lee, Y. (2009). Effects of Colloidal Silver Nanoparticles on Sclerotium-Forming Phytopathogenic Fungi. The Plant Pathology Journal,25(4), 376-380. doi:10.5423/ppj.2009.25.4.376

Gaffet, E., Tachikart, M., Kedim, O. E., & Rahouadj, R. (1996). Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations. Materials Characterization,36(4-5), 185-190. doi:10.1016/s1044-5803(96)00047-2

Sergeev, B. M., Kasaikin, V. A., Litmanovich, E. A., Sergeev, G. B., & Prusov, A. N. (1999). Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev Communications,9(4), 130-131. doi:10.1070/mc1999v009n04abeh001080

Biosynthesis of Silver Nanoparticles by Escherichia coli. (2013). Asian Journal of Chemistry,25(3). doi:10.14233/ajchem.2013.12805

Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters,62(29), 4411-4413. doi:10.1016/j.matlet.2008.06.051

Shankar, S., Ahmad, A., & Sastry, M. (2003). Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress,19(6), 1627-1631. doi:10.1021/bp034070w

Jha, A. K., Prasad, K., Prasad, K., & Kulkarni, A. (2009). Plant system: Natures nanofactory. Colloids and Surfaces B: Biointerfaces,73(2), 219-223. doi:10.1016/j.colsurfb.2009.05.018

Gurunathan, S. (2015). Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria. Journal of Industrial and Engineering Chemistry,29, 217-226. doi:10.1016/j.jiec.2015.04.005

Nanda, A., & Saravanan, M. (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 452-456. doi:10.1016/j.nano.2009.01.012

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine,3(2), 168-171. doi:10.1016/j.nano.2007.02.001

Khandelwal, N., Kaur, G., Chaubey, K. K., Singh, P., Sharma, S., Tiwari, A., . . . Kumar, N. (2014). Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Research,190, 1-7. doi:10.1016/j.virusres.2014.06.011

Galdiero, S., Rai, M., Gade, A., Falanga, A., Incoronato, N., Russo, L., . . . Ingle, A. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine,4303. doi:10.2147/ijn.s50070

Elbeshehy, E. K., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology,6. doi:10.3389/fmicb.2015.00453

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine,5(4), 382-386. doi:10.1016/j.nano.2009.06.005

Gopinath, V., & Velusamy, P. (2013). Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,106, 170-174. doi:10.1016/j.saa.2012.12.087

Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat. PLoS ONE,9(5). doi:10.1371/journal.pone.0097881

Reenaa, M., & Menon, A. S. (2017). Synthesis of Silver Nanoparticles from Different Citrus Fruit Peel Extracts and a Comparative Analysis on its Antibacterial Activity. International Journal of Current Microbiology and Applied Sciences,6(7), 2358-2365. doi:10.20546/ijcmas.2017.607.337

Phongtongpasuk, S., & Poadang, S. (2015). Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract. Advanced Materials Research,1131, 227-230. doi:10.4028/www.scientific.net/amr.1131.227

Devi, J. S., & Bhimba, B. V. (2014). Antibacterial and Antifungal Activity of Silver Nanoparticles Synthesized using Hypnea muciformis. Biosciences Biotechnology Research Asia,11(1), 235-238. doi:10.13005/bbra/1260

Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology,40(1), 53-58. doi:10.5941/myco.2012.40.1.053

Downloads

Published

2019-05-20

How to Cite

[1]
P. Panthi and S. P. S. Bhattar, “Green synthesis of Silver Nanoparticles using different fruit peels and Comparative analysis of their Antifungal activity”, Int. J. Sci. Res. Biol. Sci., vol. 6, no. 1, pp. 125–132, May 2019.

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.