Influence of Rhizospheric Bacteria on Growth and Metal Uptake of Heavy Metal Accumulating Plants-A Review

Authors

  • Thanusree Mallakuntla Ramesh Department of Microbiology, Sri Venkateswara University, Tirupati-517502, AP, India
  • Hanumanth Kumar Gurajala Department of Biotechnology, Sri Venkateswara University, Tirupati-517502, AP, India
  • Rupadevi Mopati Department of Microbiology, Sri Venkateswara University, Tirupati-517502, AP, India
  • Esther Lebonah Dulla Department of Biotechnology, Sri Venkateswara University, Tirupati-517502, AP, India
  • Pramodakumari Jasti Department of Microbiology, Sri Venkateswara University, Tirupati-517502, AP, India

Keywords:

Rhizosphere microorganisms, metal extraction, remediation

Abstract

Rhizosphere microorganisms harbour the plant accumulators and contribute to the metal extraction process. Out of bacteria and fungi, bacteria were more tolerant to heavy metals than fungi. A variety of bacteria growing in metalliferous soils helps to accumulate metals in plants in their harvestable parts and have the potential to be used for remediation of heavy metal polluted lands called plant-assisted bioremediation. The present review focuson examining the current concepts and published data on the role of rhizosphere processes, heavy metal pollution, degradation,role of rhizodeposits, plant hormones, plant secondary metabolites, siderophores and carboxylic acids and conclude with major controls that may be used for their management in plant-assisted bioremediation.

 

References

Antonella Furini, Anna Manara and Giovanni Dal Corso Editorial: “Environmental phytoremediation: plants and microorganisms at work”, Vol. 6, pp. 520-521, 2014.

Bruins M. R., Kapil S., Oehme F. W. “Microbial resistance to metals in the environment”, Ecotoxicology and Environmental Safety. Vol. 45, Issue. 3, pp. 198–207, 2000. doi: 10.1006/eesa.1999.1860.

Selvin J., ShanmughaPriya S., SeghalKiran G., Thangavelu T., SapnaBai N. “Sponge-associated marine bacteria as indicators of heavy metal pollution”,. Microbiological Research. Vol. 164, Issue. 3, pp. 352–363, 2009. doi: 10.1016/j.micres.2007.05.005.

Singh SK, Singh PP, Gupta A, et al. “Tolerance of Heavy Metal Toxicity Using PGPR Strains of Pseudomonas Species”,. In: PGPR Amelioration in Sustainable Agriculture. pp 239–252, 2012.

Joner E J, Johansen A, Loibner A P, de la Cruz M A, Szolar O H, Portal J M and Leyval C. “Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil”, Environ. Sci. Technol. Vol. 35, pp. 2773–2777, 2001.

Rajkumar M1, Sandhya S, Prasad MN, Freitas H. “Perspectives of plant-associated microbes in heavy metal phytoremediation”,. Biotechnol Adv. Vol. 30, Issue. 6, pp. 1562-74, 2012.

Krämer, U. “Phytoremediation: novel approaches to cleaning up polluted soils”,. Curr. Opin. Plant Biol. Vol. 16, pp. 133–141, 2005. doi: 10.1016/j.copbio.2005.02.006

Lee A Newman and Charles M Reynolds. “Phytodegradation of organic compounds”, Current Opinion in Biotechnology, Vol. 15, pp. 225–230, 2004.

Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al.. “Phytoremediation of contaminated soils and groundwater: lessons from the field”, Environ. Sci. Pollut. Res. Int. Vol. 16, pp. 765–794, 2009. doi: 10.1007/s11356- 009-0213-6

Al-Gheethi AAS, Lalung J, Noman EA, et al, “Removal of heavy metals and antibiotics from treated sewage effluent by bacteria”, Clean Technol. Environ. Policy Vol. 17, pp. 2101–2123, 2015.

Ma Y, Rajkumar M, Zhang C, Freitas H, “Beneficial role of bacterial endophytes in heavy metal phytoremediation”, J Environ Manage Vol. 174, pp. 14–25, 2016. doi: 10.1016/j.jenvman.2016.02.047

Zhang Q, Achal V, Xiang WN, Wang D, “Identification of heavy metal resistant bacteria isolated from Yangtze river, China”, Int J Agric Biol Vol. 16, pp. 619–623, 2014.

Guo QW, Wan R, Xie SG, “Simazine degradation in bioaugmented soil: urea impact and response of ammonia oxidizing bacteria and other soil bacterial communities”, Environ Sci Pollut Res Vol. 21, pp. 337–343, 2014.

Lopes AR, Danko AS, Manaia CM, Nunes OC, “Molinate biodegradation in soils: natural attenuation versus bioaugmentation”, ApplMicrobiolBiotechnol Vol. 97, pp. 2691–2700, 2013.

Onneby K, Jonsson A, Stenstrom J, “A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms”, Biodegradation, Vol. 21, pp. 21–29, 2010.

Onneby K, Hakansson S, Pizzul L, Stenstrom J, “Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp”, Biodegradation Vol. 25, pp. 291–300, 2014.

Pimmata P, Reungsang A, Plangklang P, “Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation”, Int Biodeterior Biodegrad Vol. 85, pp. 196–204, 2013.

Wan R, Yang YY, Sun WM, Wang Z, Xie SG, “Simazine biodegradation and community structures of ammoniaoxidizing microorganisms in bioaugmented soil: impact of ammonia and nitrate nitrogen sources”, Environ Sci Pollut Res Vol. 21, pp. 3175–3181, 2014.

Kim, Y.M., Nam, I.H., Murugesan, K.S., Crowley, D.E., Chang, Y.S., “Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp”, PH-07. Appl. Microbiol. Biotechnol. Vol. 77, Issue. 1, pp. 187-194, 2007.

Walter W. Wenzel. “Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils”, Plant Soil Vol. 5, pp. 321:385–408, 2009.

Fan, S. X., Li, P. J., Gong, Z. Q., Ren, W. X., and He, N. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicagosativa L.). Chemosphere, Vol. 71, pp. 1593–1598, 2008. doi: 10.1016/j.chemosphere.2007.10.068

Glick, B. R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. Vol. 28, pp. 367–374, 2010. doi: 10.1016/j.biotechadv.2010.02.001

Li, Y., Liang, F., Zhu, Y. F., and Wang, F. P. “Phytoremediation of a PCB contaminated soil by alfalfa and tall fescue single and mixed plants cultivation”, J. Soil. Sediment. Vol. 13, pp. 925–931, 2013. doi: 10.1007/s11368-012-0618-6

L. Wood J, Liu W, et al, “Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils”, AIMS Bioeng Vol. 3, pp. 211–229, 2016. doi: 10.3934/bioeng.2016.2.211

Kannabiran K, “Actinobacteria are better bioremediating agents for removal of toxic heavy metals: An overview”, Int J Environ Technol Manag Vol, 20, pp. 129–138, 2017. doi: 10.1504/IJETM.2017.089649

Cioica N, Tudora C, Iuga D, et al, “A review on phytoremediation as an ecological method for in situ clean up of heavy metals contaminated soils”, In: E3S Web of Conferences. 2019.

Ranjitha J, Raj A, Kashyap R, et al, Removal of heavy metals from industrial effluent using salvinia molesta. Int J ChemTech Res Vol. 9, pp. 608–613, 2016.

Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ, "Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment", Environ Sci Pollut Res Vol. 12, pp. 34–48, 2005.

Melanie Kuffner &Markus Puschenreiter & Gerlinde Wieshammer & Markus Gorfer & Angela Sessitsch, "Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows", Plant Soil Vol. 304, pp. 35–44. 2018.

Angela Sessitsch, Melanie Kuffner, Petra Kidd, Jaco Vangronsveld, Walter W. Wenzel, Katharina Fallmann,and Markus Puschenreiter."The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soil", Soil Biol Biochem. Vol. 60, pp. 182–194, 2013.

Sheng X-F, Xia J-J, " Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria", Chemosphere Vol. 64, pp. 1036–1042, 2006.

Shelton, D.R., Khader, S., Karns, J.S., Pogell, B.M., "Metabolism of twelve herbicides by Streptomyces", Bio-degradation Vol. 7, pp. 129-136, 1996.

Staicu, L. C., van Hullebusch, E. D., Lens, P. N. L., Pilon-Smits, E. A. H., and Oturan, M. A. "Electro coagulation of colloidal biogenic selenium", Environ. Sci. Pollut. Res. Int. Vol. 22, pp. 3127–3137, 2015. doi: 10.1007/s11356-014-3592-2

Hernlem B.J., Vane L.M., Sayles G.D. "Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations", Inorganica Chimica Acta. Vol. 244, pp.179–184, 1996.

Hider R.C., Kong X. "Chemistry and biology of siderophores", Natural Products Report. Vol. 27, pp. 637–657, 2010.

Nakouti I., Hobbs G. "A new approach to studying ion uptake by actinomycetes",. Journal of Basic Microbiology. Vol. 53, Issue. 11, pp. 913–916, 2013.

Ryan P.R., Delhaize E., Jones D.L. "Function and mechanism of organic anion exudation from plant roots",. Annual Review of Plant Physiology and Plant Molecular Biology. Vol. 52, pp. 527–560, 2001.

Küpper H., Mijovilovich A., Meyer-Klaucke W., Kroneck P.M.H. "Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy", Plant Physiology. Vol. 134, pp. 748–757, 2004.

Li W., Ye Z., Wong M. "Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii", Plant Soil. Vol. 326, pp. 453–467, 2009.

Downloads

Published

2019-12-31

How to Cite

[1]
T. M. Ramesh, H. Kumar Gurajala, R. Mopati, E. L. Dulla, and P. Jasti, “Influence of Rhizospheric Bacteria on Growth and Metal Uptake of Heavy Metal Accumulating Plants-A Review”, Int. J. Sci. Res. Biol. Sci., vol. 6, no. 6, pp. 47–51, Dec. 2019.

Issue

Section

Review Article

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.