Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani

Authors

  • Phazna Devi T.A. Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal West, Manipur, India
  • Dinabandhu Sahoo Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal West, Manipur, India
  • Indira Devi S Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal West, Manipur, India
  • Kalita M.C. Department of Biotechnology, Gauhati University, Guwahati, Assam, India
  • Aravind Setti Department of Genetics, Osmania University, Hyderabad, Telangana State, India

Keywords:

Rhizobacteria, Umorok, Antagonism, Molecular characterization, Rhizoctonia solani

Abstract

Umorok (Capsicum chinense) is a commercially important chilli plant of Northeastern India. To improve the overall growth and health of the plant we explore the rhizosphere bacteria associated with the plant through serial dilution and pure culture method from three different growth stages juvenile, flowering and fruiting stage. The isolated rhizobacteria were then screened for their biocontrol enzyme activities like cellulose, protease and chitinase, and the potential isolates were molecular characterized using 16S rRNA gene sequencing. The identified microorganism were then studied for its antagonism assay against the fungal pathogen Rhizoctonia solani using dual culture method. The isolates which showed the highest antagonism were selected and treated with the pathogen infected Umorok plant and measured the growth indicating traits in the greenhouse experiment. During the molecular characterization of the rhizobacteria, 127 novel strains were identified. Five bacterial phyla were observed in the three growth stages, and gammaproteobacteria were predominantly present among them. Seven potential rhizobacteria were selected from the diverse list of rhizobacteria showing the biocontrol and antagonism assays. Umorok was infected with plant pathogen R. solani and treated with the selected rhizobacteria to measure the plant growth. The findings confirmed that Lysobacter enzymogenesis competitively inhibited the R. solani and significantly improved the shoot and root system.

 

References

Abdeljalil N, Renault D, Gerbore J, Vallance J, Rey P, Daami-remadi M. Comparative Efficacy of Three Tomato-Associated Rhizobacteria used Singly or in Combination in Suppressing Rhizoctonia Root Rot and Enhancing Tomato Growth. Microb Biochem Technol. OMICS International; 2016;8: 110–119. doi:10.4172/1948-5948.1000272

Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. Frontiers Media SA; 2013;4: 356. doi:10.3389/fpls.2013.00356

Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Science. Elsevier; 2018. pp. 102–111. doi:10.1016/j.plantsci.2017.11.012

Lugtenberg B, Rozen DE, Kamilova F. Wars between microbes on roots and fruits. F1000Research. Faculty of 1000 Ltd; 2017;6: 343. doi:10.12688/f1000research.10696.1

Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev. American Society for Microbiology; 2017;81: e00066-16. doi:10.1128/MMBR.00066-16

Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology. American Society for Microbiology (ASM); 2005. pp. 4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005

Jeeatid N, Techawongstien S, Suriharn B, Chanthai S, Bosland PW, Techawongstien S. Influence of water stresses on capsaicinoid production in hot pepper (Capsicum chinense Jacq.) cultivars with different pungency levels. Food Chem. Elsevier; 2018;245: 792–797. doi:10.1016/j.foodchem.2017.11.110

Loizzo MR, Pugliese A, Bonesi M, Menichini F, Tundis R. Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: A comparison between fresh and processed peppers. LWT - Food Sci Technol. Academic Press; 2015;64: 623–631. doi:10.1016/J.LWT.2015.06.042

Loizzo MR, Bonesi M, Serio A, Chaves-López C, Falco T, Paparella A, et al. Application of nine air-dried Capsicum annum cultivars as food preservative: Micronutrient content, antioxidant activity, and foodborne pathogens inhibitory effects. Int J Food Prop. Taylor & Francis; 2017;20: 899–910. doi:10.1080/10942912.2016.1188310

Vargas-Hernández M, Torres-Pacheco I, Gautier F, Álvarez-Mayorga B, Cruz-Hernández A, García-Mier L, et al. Influence of hydrogen peroxide foliar applications on in vitro antimicrobial activity in Capsicum chinense Jacq. Plant Biosyst - An Int J Deal with all Asp Plant Biol. Taylor & Francis; 2017;151: 269–275. doi:10.1080/11263504.2016.1168494

Stipcovich T, Barbero GF, Ferreiro-González M, Palma M, Barroso CG. Fast analysis of capsaicinoids in Naga Jolokia extracts (Capsicum chinense) by high-performance liquid chromatography using fused core columns. Food Chem. Elsevier; 2018;239: 217–224. doi:10.1016/J.FOODCHEM.2017.06.098

Güler S, Zik B. Effects of capsaicin on ovarian granulosa cell proliferation and apoptosis. Cell Tissue Res. Springer Berlin Heidelberg; 2018; 1–7. doi:10.1007/s00441-018-2803-4

Deng Y, Huang X, Wu H, Zhao M, Lu Q, Israeli E, et al. Some like it hot: The emerging role of spicy food (capsaicin) in autoimmune diseases. Autoimmunity Reviews. Elsevier; 2016. pp. 451–456. doi:10.1016/j.autrev.2016.01.009

McCarty MF, DiNicolantonio JJ, O’Keefe JH. Capsaicin may have important potential for promoting vascular and metabolic health. Open Hear. BMJ Publishing Group; 2015;2: e000262. doi:10.1136/openhrt-2015-000262

Sánchez-Borges CA, Souza-Perera RA, Zúñiga-Aguilar JJ, Shrestha S, Lamour K, Castillo-Aguilar CC. First Report of Phytophthora capsici Causing Damping-off of Capsicum chinense in the Yucatan Peninsula. Plant Dis. Plant Disease; 2015;100: 1247. doi:10.1094/PDIS-09-15-1047-PDN

de Oliveira CVS, Matos KS, De Albuquerque DMC, Hanada RE, Da Silva GF. Identification of Colletotrichum isolates from Capsicum chinense in Amazon. Genet Mol Res. Genetics and Molecular Research; 2017;16. doi:10.4238/gmr16029601

Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology. Sociedade Brasileira de Genética; 2012. pp. 1044–1051. doi:10.1590/S1415-47572012000600020

Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol. Springer; 2017;33: 197. doi:10.1007/s11274-017-2364-9

Sundaramoorthy S, Raguchander T, Ragupathi N, Samiyappan R. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biol Control. Academic Press; 2012;60: 59–67. doi:10.1016/J.BIOCONTROL.2011.10.002

Priya S, Upadhyay JP. Antagonistic Potential of Trichoderma harzianum against Rhizoctonia solani Causing Banded Leaf and Sheath Blight of Maize. IntJCurrMicrobiolAppSci. 2017;6: 886–890. doi:10.20546/ijcmas.2017.610.106

Selva Kumar S, Ram Krishna Rao M, Deepak Kumar R, Panwar S, Prasad CS. Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch Phytopathol Plant Prot. Taylor & Francis; 2013;46: 487–502. doi:10.1080/03235408.2012.745054

Aneja KR. Experiment in Microbiology, Plant Pathology and Biotechnology, 4th Edn. New Age International Publishers; 2003.

Agrawal, T., and Kotasthane AS. A simple medium for screening chitinase activity of Trichoderma spp. In: Methods of Molecular Identification and laboratory Protocols (International Subcommission on Trichoderma and Hypocrea Taxonomy (ISTH)) [Internet]. 2009. Available: http://www.isth.info/methods/method.php?method_id=11.

Kazanas N. Proteolytic Activity of Microorganisms Isolated from Freshwater Fish. Appl Microbiol. 1968;16: 128–132.

Bjelić D, Marinković J, Tintor B, Mrkovački N. Antifungal and Plant Growth Promoting Activities of Indigenous Rhizobacteria Isolated from Maize (Zea mays L.) Rhizosphere. Commun Soil Sci Plant Anal. Taylor & Francis; 2018;49: 88–98. doi:10.1080/00103624.2017.1421650

Avinash TS, Rai R V. Antifungal Activity of Plant Growth Promoting Rhizobacteria Against Fusarium oxysporum and Phoma sp. of Cucurbitaceae. Microbial Diversity and Biotechnology in Food Security. New Delhi: Springer India; 2014. pp. 257–264. doi:10.1007/978-81-322-1801-2_23

Sarbadhikary SB, Mandal NC. Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere. Elsevier; 2017;3: 170–175. doi:10.1016/j.rhisph.2017.04.014

Mubarik NR, Mahagiani I, Anindyaputri A, Santoso S, Rusmana I. Chitinolytic bacteria isolated from chili rhizosphere: Chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci genn.). Am J Agric Biol Sci. 2010;5: 430–435. doi:10.3844/ajabssp.2010.430.435

Köberl M, Dita M, Martinuz A, Staver C, Berg G. Members of Gammaproteobacteria as indicator species of healthy banana plants on Fusarium wilt-infested fields in Central America. Sci Rep. Nature Publishing Group; 2017;7: 45318. doi:10.1038/srep45318

Inceoǧlu Ö, Al-Soud WA, Salles JF, Semenov A V., van Elsas JD. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. Gilbert JA, editor. PLoS One. Public Library of Science; 2011;6: e23321. doi:10.1371/journal.pone.0023321

Dinesh R, Anandaraj M, Kumar A, Bini YK, Subila KP, Aravind R. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res. Urban & Fischer; 2015;173: 34–43. doi:10.1016/j.micres.2015.01.014

Gómez Expósito R, Postma J, Raaijmakers JM, De Bruijn I. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils. Front Microbiol. Frontiers Media SA; 2015;6: 1243. doi:10.3389/fmicb.2015.01243

Downloads

Published

2019-02-28

How to Cite

[1]
P. Devi T.A., D. Sahoo, I. Devi S, K. M.C., and A. Setti, “Rhizobacterial isolates of Capsicum chinense inhibited fungal pathogen Rhizoctonia solani”, Int. J. Sci. Res. Biol. Sci., vol. 6, no. 1, pp. 112–117, Feb. 2019.

Issue

Section

Research Article

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.